Peter Hoenen, On the Problem of Necessity in Geometry
Sku: 1018ADTE030
Archival Number:
Author: P. Hoenen
Language(s): English translation of 10180DTL030
Decade: 1930
Open 1018ADTE030.pdf
Description:
An English translation of Hoenen, De problemate necessitatis geometricae, Gregorianum. Influential on Lonergan'd development.
Corrections:
3, 5-6: 1540>5040 (twice)
9, 12: add after 'numbers.': The following number is always defined by its arising from the preceding number by the addition of '1.'
15, -7: add after 'arise.': The exactitude that is present in the judgments of the mind was already present in the sense data. Only necessity was lacking in this sense knowledge. But in geometry there is a twofold question; besides the problem of necessity there is a problem of exactitude.
17, 4: add after 'considered.': Thus what geometry discovers has its validity immediately from bodies as extended, since it is derived from these.
22, 10: close parentheses after 'chain.'
29, -1: and > are
31, 6: theory > our theory
31, -4: underline 'every'
31, 1, and several places on 32: supposition > supposit
32, -13: These > There
33, 13: in judgment > in this judgment
Database and descriptions © Copyright 2017 by Robert M. Doran
Transcription:
No transcription available.